Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase

نویسندگان

  • Sung S. Choi
  • Kichul Yoon
  • Seon-A Choi
  • Seung-Bin Yoon
  • Seung U. Kim
  • Hong J. Lee
چکیده

Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line

The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...

متن کامل

Expression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B

Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...

متن کامل

Optimization of a Neural Stem-Cell-Mediated Carboxylesterase/Irinotecan Gene Therapy for Metastatic Neuroblastoma

Despite improved survival for children with newly diagnosed neuroblastoma (NB), recurrent disease is a significant problem, with treatment options limited by anti-tumor efficacy, patient drug tolerance, and cumulative toxicity. We previously demonstrated that neural stem cells (NSCs) expressing a modified rabbit carboxylesterase (rCE) can distribute to metastatic NB tumor foci in multiple organ...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

The Effect of Wild Type P53 Gene Transfer on Growth Properties and Tumorigenicity of PANC-1 Tumor Cell Line

The p53 protein function is essential for the maintenance of the nontumorigenic cell phenotype. Pancreatic tumor cells show a very high frequency of p53 mutation. To determine if restoration of wild type p53 function can be used to eliminate the tumorigenic phenotype in these cells, pancreatic tumor cell lines, PANC-1 and HTB80, differing in p53 status were stably transfected with exogenous wil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016